首页> 外文OA文献 >3D Reconstruction in Canonical Co-ordinate Space from Arbitrarily Oriented 2D Images
【2h】

3D Reconstruction in Canonical Co-ordinate Space from Arbitrarily Oriented 2D Images

机译:任意取向二维图像的正则坐标空间三维重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Limited capture range and the requirement to provide high quality initializations for optimization-based 2D/3D image registration methods can significantly degrade the per- formance of 3D image reconstruction and motion compensation pipelines. Challenging clinical imaging scenarios, that contain sig- nificant subject motion such as fetal in-utero imaging, complicate the 3D image and volume reconstruction process. In this paper we present a learning based image registra- tion method capable of predicting 3D rigid transformations of arbitrarily oriented 2D image slices, with respect to a learned canonical atlas co-ordinate system. Only image slice intensity information is used to perform registration and canonical align- ment, no spatial transform initialization is required. To find image transformations we utilize a Convolutional Neural Network (CNN) architecture to learn the regression function capable of mapping 2D image slices to the 3D canonical atlas space. We extensively evaluate the effectiveness of our approach quantitatively on simulated Magnetic Resonance Imaging (MRI), fetal brain imagery with synthetic motion and further demon- strate qualitative results on real fetal MRI data where our method is integrated into a full reconstruction and motion compensation pipeline. Our learning based registration achieves an average spatial prediction error of 7 mm on simulated data and produces qualitatively improved reconstructions for heavily moving fetuses with gestational ages of approximately 20 weeks. Our model provides a general and computationally efficient solution to the 2D-3D registration initialization problem and is suitable for real- time scenarios.
机译:有限的捕获范围以及为基于优化的2D / 3D图像配准方法提供高质量初始化的要求,可能会大大降低3D图像重建和运动补偿管线的性能。具有挑战性的临床成像场景(包含胎儿体内成像等重大受试者运动)使3D图像和体积重建过程变得复杂。在本文中,我们提出了一种基于学习的图像注册方法,该方法能够预测相对于学习的规范图集坐标系的任意定向2D图像切片的3D刚性变换。仅图像切片强度信息用于执行配准和规范对齐,而无需空间变换初始化。为了找到图像变换,我们利用卷积神经网络(CNN)架构来学习能够将2D图像切片映射到3D标准图集空间的回归函数。我们在模拟磁共振成像(MRI),具有合成运动的胎儿脑图像上定量地评估了我们方法的有效性,并在真实的胎儿MRI数据上进一步证明了定性结果,并将我们的方法集成到了完整的重建和运动补偿流水线中。我们的基于学习的配准在模拟数据上实现了7 mm的平均空间预测误差,并为定性约为20周的剧烈运动的胎儿提供了质量得到改善的重建。我们的模型为2D-3D注册初始化问题提供了一种通用且计算效率高的解决方案,适用于实时场景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号